Login / Signup

Orientational Behavior and Vibrational Response of Glycine at Aqueous Interfaces.

Balázs AntaliczSanghamitra SenguptaAswathi VilangottunjalilJan VersluisHuib J Bakker
Published in: The journal of physical chemistry letters (2024)
Aqueous glycine plays many different roles in living systems, from being a building block for proteins to being a neurotransmitter. To better understand its fundamental behavior, we study glycine's orientational behavior near model aqueous interfaces, in the absence and presence of electric fields and biorelevant ions. To this purpose, we use a surface-specific technique called heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). Using HD-VSFG, we directly probe the symmetric and antisymmetric stretching vibrations of the carboxylate group of zwitterionic glycine. From their relative amplitudes, we infer the zwitterion's orientation near surfactant-covered interfaces and find that it is governed by both electrostatic and surfactant-specific interactions. By introducing additional ions, we observe that the net orientation is altered by the enhanced ionic strength, indicating a change in the balance of the electrostatic and surfactant-specific interactions.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • quantum dots
  • density functional theory
  • high resolution
  • energy transfer
  • solid state
  • single molecule
  • molecular dynamics