Most quantitative studies of neighborhood racial change rely on census tracts as the unit of analysis. However, tracts are insensitive to variation in the geographic scale of the phenomenon under investigation and to proximity among a focal tract's residents and those in nearby territory. Tracts may also align poorly with residents' perceptions of their own neighborhood and with the spatial reach of their daily activities. To address these limitations, we propose that changes in racial structure (i.e., in overall diversity and group-specific proportions) be examined within multiple egocentric neighborhoods, a series of nested local environments surrounding each individual that approximate meaningful domains of experience. Our egocentric approach applies GIS procedures to census block data, using race-specific population densities to redistribute block counts of whites, blacks, Hispanics, and Asians across 50-meter by 50-meter cells. For each cell, we then compute the proximity-adjusted racial composition of four different-sized local environments based on the weighted average racial group counts in adjacent cells. The value of this approach is illustrated with 1990-2000 data from a previous study of 40 large metropolitan areas. We document exposure to increasing neighborhood racial diversity during the decade, although the magnitude of this increase in diversity-and of shifts in the particular races to which one is exposed-differs by local environment size and racial group membership. Changes in diversity exposure at the neighborhood level also depend on how diverse the metro area as a whole has become.