Login / Signup

Comparison of methods to quantify metabolic rate and its relationship with activity in larval lake sturgeon Acipenser fulvescens.

Gwangseok R YoonForrest BjornsonDavid DeslauriersW Gary Anderson
Published in: Journal of fish biology (2021)
Until recently most studies have focussed on method development for metabolic rate assessment in adult and/or juvenile fish with less focus on measurement of oxygen consumption (ṀO2 ) during early life history stages, including fast-growing larval fish and even less focus on nonteleostean species. In the present study we evaluated measurement techniques for standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope in an Acipenseriform, the lake sturgeon Acipenser fulvescens, throughout the first year of life. Standardized forced exercise protocols to assess MMR were conducted for 5 or 15 min before or after measurement of SMR. We used different levels of oxygen decline during the measurement period of MMR post forced exercise to understand the influence these may have on the calculation of MMR. Opercular rate and tail beat frequencies were recorded by video as measures of behaviours and compared to metabolic rate recorded over a 24 h period. Results indicate that calculated values for aerobic scope were lower in younger fish. Neither exercise sequence nor exercise duration influenced metabolic rate measurements in the younger fish, but exercise duration did affect measurement of MMR in older fish. Finally, there was no strong correlation between metabolic rate and the measured behaviours in the lake sturgeon at either age. Based on the results, we recommend that a minimum of 6 h of acclimation to the respirometry chamber should be given prior to measuring SMR, a chasing protocol to elicit MMR should ideally be performed at the end of experiment, a short chasing time should be avoided to minimize variation and assessment of MMR should balance measurement limitations of the probes along with when and for how long oxygen consumption is measured.
Keyphrases
  • high intensity
  • physical activity
  • resistance training
  • blood pressure
  • small molecule
  • young adults