Login / Signup

Information theory and robotics meet to study predator-prey interactions.

Daniele NeriTommaso RubertoGabrielle Cord-CruzMaurizio Porfiri
Published in: Chaos (Woodbury, N.Y.) (2018)
Transfer entropy holds promise to advance our understanding of animal behavior, by affording the identification of causal relationships that underlie animal interactions. A critical step toward the reliable implementation of this powerful information-theoretic concept entails the design of experiments in which causal relationships could be systematically controlled. Here, we put forward a robotics-based experimental approach to test the validity of transfer entropy in the study of predator-prey interactions. We investigate the behavioral response of zebrafish to a fear-evoking robotic stimulus, designed after the morpho-physiology of the red tiger oscar and actuated along preprogrammed trajectories. From the time series of the positions of the zebrafish and the robotic stimulus, we demonstrate that transfer entropy correctly identifies the influence of the stimulus on the focal subject. Building on this evidence, we apply transfer entropy to study the interactions between zebrafish and a live red tiger oscar. The analysis of transfer entropy reveals a change in the direction of the information flow, suggesting a mutual influence between the predator and the prey, where the predator adapts its strategy as a function of the movement of the prey, which, in turn, adjusts its escape as a function of the predator motion. Through the integration of information theory and robotics, this study posits a new approach to study predator-prey interactions in freshwater fish.
Keyphrases
  • gene expression
  • high resolution
  • machine learning
  • minimally invasive
  • robot assisted
  • social media
  • single molecule
  • big data
  • electron transfer