Improvement in the Tracking Performance of a Maneuvering Target in the Presence of Clutter.
Ghawas Ali ShahSumair KhanSufyan Ali MemonMohsin ShahzadZahid MahmoodUzair KhanPublished in: Sensors (Basel, Switzerland) (2022)
The proposed work uses fixed lag smoothing on the interactive multiple model-integrated probabilistic data association algorithm (IMM-IPDA) to enhance its performance. This approach makes use of the advantages of the fixed lag smoothing algorithm to track the motion of a maneuvering target while it is surrounded by clutter. The suggested method provides a new mathematical foundation in terms of smoothing for mode probabilities in addition to the target trajectory state and target existence state by including the smoothing advantages. The suggested fixed lag smoothing IMM-IPDA (FLs IMM-IPDA) method's root mean square error (RMSE), true track rate (TTR), and mode probabilities are compared to those of other recent algorithms in the literature in this study. The results clearly show that the proposed algorithm outperformed the already-known methods in the literature in terms of these above parameters of interest.