Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion.
Shaktivel ManavalanPitchaimani VeerakumarShen-Ming ChenKing-Chuen LinPublished in: Mikrochimica acta (2019)
The two-step microwave method was used to synthesize zinc oxide nanostars linked to graphene oxide (GO) nanosheets. The material was used to modify a screen printed carbon electrode (SPCE) and then explored as a binder-free electrocatalyst for the electrochemical determination of methyl parathion (MP). The morphology and crystallinity of the material were characterized by various techniques. The modified SPCE shows extraordinary electrochemical performances for sensitive determination of MP. Figures of merit include (a) a wide linear dynamic range (0.03-670 μM), (b) a low detection limit (1.2 nM; at S/N = 3), (c) a comparably low working voltage (-0.69 V vs. Ag/AgCl); and (d) an excellent sensitivity (16.5 μA μM-1 cm-2) that surpasses other modified electrodes. The sensor was successfully applied to the determination of MP, even in the presence of other common electroactive interference, in (spiked) fruits and vegetables. Graphical abstractGraphene oxide anchored three-dimensional zinc oxide nanostars were used to coat electrode for the sensing of methyl parathion (MP) by voltammetry.