Login / Signup

Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose.

Weiqian TianArmin VahidMohammadiMichael S ReidZhen WangLiangqi OuyangJohan ErlandssonTorbjörn PetterssonLars WågbergMajid BeidaghiMahiar Max Hamedi
Published in: Advanced materials (Deerfield Beach, Fla.) (2019)
The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3 C2 Tx ) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g-1 and a high conductivity of 295 S cm-1 . It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.
Keyphrases
  • reduced graphene oxide
  • drug delivery
  • ionic liquid
  • photodynamic therapy
  • high resolution
  • room temperature
  • liquid chromatography
  • tandem mass spectrometry