Login / Signup

Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing.

Namitha K PremanSindhu Priya E SAshwini PrabhuSadiya Bi ShaikhVipin CRashmi R BarkiYashodhar Prabhakar BhandaryPunchappady-Devasya RekhaRenjith P Johnson
Published in: Journal of materials chemistry. B (2021)
Injectable, drug-releasing hydrogel scaffolds with multifunctional properties including hemostasis and anti-bacterial activity are essential for successful wound healing; however, designing ideal materials is still challenging. Herein, we demonstrate the fabrication of a biodegradable, temperature-pH dual responsive supramolecular hydrogel (SHG) scaffold based on sodium alginate/poly(N-vinyl caprolactam) (AG/PVCL) through free radical polymerization and the subsequent chemical and ionic cross-linking. A natural therapeutic molecule, tannic acid (TA)-incorporated SHG (AG/PVCL-TA), was also fabricated and its hemostatic and wound healing efficiency were studied. In the AG/PVCL-TA system, TA acts as a therapeutic molecule and also substitutes as an effective gelation binder. Notably, the polyphenol-arm structure and diverse bonding abilities of TA can hold polymer chains through multiple bonding and co-ordinate cross-linking, which were vital in the formation of the mechanically robust AG/PVCL-TA. The SHG formation was successfully balanced by varying the composition of SA, VCL, TA and cross-linkers. The AG/PVCL-TA scaffold was capable of releasing a therapeutic dose of TA in a sustained manner under physiological temperature-pH conditions. AG/PVCL-TA displayed excellent free radical scavenging, anti-inflammatory, anti-bacterial, and cell proliferation activity towards the 3T3 fibroblast cell line. The wound healing performance of AG/PVCL-TA was further confirmed in skin excision wound models, which demonstrated the potential application of AG/PVCL-TA for skin regeneration and rapid wound healing.
Keyphrases