Login / Signup

Controller-driven vector autoregression model for predicting content popularity in programmable named data networking devices.

Firdous QaiserMudassar HussainAbdul AhadIvan Miguel Pires
Published in: PeerJ. Computer science (2024)
Named Data Networking (NDN) has emerged as a promising network architecture for content delivery in edge infrastructures, primarily due to its name-based routing and integrated in-network caching. Despite these advantages, sub-optimal performance often results from the decentralized decision-making processes of caching devices. This article introduces a paradigm shift by implementing a Software Defined Networking (SDN) controller to optimize the placement of highly popular content in NDN nodes. The optimization process considers critical networking factors, including network congestion, security, topology modification, and flowrules alterations, which are essential for shaping content caching strategies. The article presents a novel content caching framework, Popularity-aware Caching in Popular Programmable NDN nodes (PaCPn). Employing a multi-variant vector autoregression (VAR) model driven by an SDN controller, PaCPn periodically updates content popularity based on time-series data, including 'request rates' and 'past popularity'. It also introduces a controller-driven heuristic algorithm that evaluates the proximity of caching points to consumers, considering factors such as 'distance cost,' 'delivery time,' and the specific 'status of the requested content'. PaCPn utilizes customized DATA named packets to ensure the source stores content with a valid residual freshness period while preventing intermediate nodes from caching it. The experimental results demonstrate significant improvements achieved by the proposed technique PaCPn compared to existing schemes. Specifically, the technique enhances cache hit rates by 20% across various metrics, including cache size, Zipf parameter, and exchanged traffic within edge infrastructure. Moreover, it reduces content retrieval delays by 28%, considering metrics such as cache capacity, the number of consumers, and network throughput. This research advances NDN content caching and offers potential optimizations for edge infrastructures.
Keyphrases
  • electronic health record
  • big data
  • early stage
  • sentinel lymph node
  • squamous cell carcinoma
  • radiation therapy
  • quality improvement
  • neoadjuvant chemotherapy
  • data analysis
  • artificial intelligence
  • neural network