Molecular and Genetic Evidence for the PDGFRα-Independent Population of Oligodendrocyte Progenitor Cells in the Developing Mouse Brain.
Kang ZhengChunyang WangJunlin YangHao HuangXiaofeng ZhaoZunyi ZhangMengsheng QiuPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2018)
PDGFRα, specifically expressed by immature oligodendrocyte progenitor cells (OPCs) in the CNS, plays a critical role in OPC proliferation and migration. However, it has been uncertain whether all cells of oligodendrocyte lineage are derived from the PDGFRα-expressing OPCs. In the present study, we uncovered a PDGFRα-independent oligodendrocyte lineage in the developing cortex. This OPC subpopulation originates from the local ventricular/subventricular zone after birth and contributes to the earliest mature oligodendrocytes in the cortex. PDGFRα signaling does not regulate the generation and differentiation of cortical OPCs. Fate-mapping studies in the PDGFRαCreER; Sox10-GFP/tdTom double-transgenic mice of either sex have further corroborated the PDGFRα-independent oligodendrocyte lineage. This study provides additional missing genetic evidence for PDGFRα-independent oligodendrocyte lineage in the developing hindbrain.SIGNIFICANCE STATEMENT This is the first report of a subpopulation of oligodendrocyte lineage in the developing mouse cortex independent of PDGFRα signaling. These oligodendrocyte progenitor cells are generated from the local ventral ventricular zone/subventricular zone after birth, and contribute to the earliest mature oligodendrocytes in the cortex.