Login / Signup

In Situ Variable-Temperature Scanning Tunneling Microscopy Studies of Graphene Growth Using Benzene on Pd(111).

Pedro AriasJan TesařAbby KavnerTomáš ŠikolaSuneel Kumar Kodambaka
Published in: ACS nano (2020)
Using a combination of in situ ultrahigh-vacuum variable-temperature scanning tunneling microscopy, ex situ Raman spectroscopy, and scanning electron microscopy, we investigated the growth of graphene using benzene on Pd(111) at temperatures up to 1100 K. Benzene adsorbs readily on Pd(111) at room temperature and forms an ordered superstructure upon annealing at 473 K. Exposure to benzene at 673 K enhances Pd step motion and yields primarily amorphous carbon upon cooling to room temperature. Monolayer graphene domains, 10-30 nm in size, appear during annealing this sample at 873 K. Dosing benzene at 1100 K results in graphene domains with varying degrees of crystallinity, while post-deposition annealing at 1100 K for 1200 s yields monolayer graphene domains larger than 150 × 150 nm2. Our results, which indicate that graphene growth on Pd(111) using benzene requires deposition/annealing temperatures higher than 673 K, are in striking contrast with the reported growth of graphene using benzene at temperatures as low as 373 K on relatively inert Cu surfaces.
Keyphrases