Neuronal Dynamics of Pain in Parkinson's Disease.
Kaoru KinugawaTomoo ManoKazuma SugiePublished in: Brain sciences (2021)
Pain is an important non-motor symptom of Parkinson's disease (PD). It negatively impacts the quality of life. However, the pathophysiological mechanisms underlying pain in PD remain to be elucidated. This study sought to use electroencephalographic (EEG) coherence analysis to compare neuronal synchronization in neuronal networks between patients with PD, with and without pain. Twenty-four patients with sporadic PD were evaluated for the presence of pain. Time-frequency and coherence analyses were performed on their EEG data. Whole-brain and regional coherence were calculated and compared between pain-positive and pain-negative patients. There was no significant difference in the whole-brain coherence between the pain-positive and pain-negative groups. However, temporal-temporal coherence differed significantly between the two groups (p = 0.031). Our findings indicate that aberrant synchronization of inter-temporal regions is involved in PD-related pain. This will further our understanding of the mechanisms underlying pain in PD.