Reaction of Hydrazine with Solution- and Vacuum-Prepared Selectively Terminated Si(100) Surfaces: Pathways to the Formation of Direct Si-N Bonds.
Dhamelyz Silva-QuinonesChuan HeKevin J DwyerRobert E ButeraGeorge T WangAndrew V TeplyakovPublished in: Langmuir : the ACS journal of surfaces and colloids (2020)
The reactivity of liquid hydrazine (N2H4) with respect to H-, Cl-, and Br-terminated Si(100) surfaces was investigated to uncover the principles of nitrogen incorporation into the interface. This process has important implications in a wide variety of applications, including semiconductor surface passivation and functionalization, nitride growth, and many others. The use of hydrazine as a precursor allows for reactions that exclude carbon and oxygen, the primary sources of contamination in processing. In this work, the reactivity of N2H4 with H- and Cl-terminated surfaces prepared by traditional solvent-based methods and with a Br-terminated Si(100) prepared in ultrahigh vacuum was compared. The reactions were studied with X-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy, and the observations were supported by computational investigations. The H-terminated surface led to the highest level of nitrogen incorporation; however, the process proceeds with increasing surface roughness, suggesting possible etching or replacement reactions. In the case of Cl-terminated (predominantly dichloride) and Br-terminated (monobromide) surfaces, the amount of nitrogen incorporation on both surfaces after the reaction with hydrazine was very similar despite the differences in preparation, initial structure, and chemical composition. Density functional theory was used to propose the possible surface structures and to analyze surface reactivity.
Keyphrases
- high resolution
- atomic force microscopy
- density functional theory
- room temperature
- biofilm formation
- fluorescent probe
- single molecule
- high speed
- drinking water
- molecular dynamics
- risk assessment
- ionic liquid
- magnetic resonance
- pseudomonas aeruginosa
- cystic fibrosis
- staphylococcus aureus
- african american
- health risk
- mass spectrometry
- single cell
- solid state
- tandem mass spectrometry
- human health