Login / Signup

When to use one-dimensional, two-dimensional, and Shifted Transversal Design pooling in mycotoxin screening.

Xianbin ChengRuben A ChavezMatthew J Stasiewicz
Published in: PloS one (2020)
While complex sample pooling strategies have been developed for large-scale experiments with robotic liquid handling, many medium-scale experiments like mycotoxin screening by Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-well plates. At this scale, the opportunity to save on reagent costs is offset by the increased costs of labor, materials, and risk-of-error caused by increasingly complex pooling strategies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Transversal Design (STD) pooling to study whether pooling affects assay accuracy and experimental cost and to provide guidance for when a human experimentalist might benefit from pooling. We approximated mycotoxin contamination in single corn kernels by fitting statistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumonisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the validated simulation results, assay sensitivity remains 100% for all four pooling strategies while specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and 80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respectively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3-3.3 fold for 48-well plates and 1.2-4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipetting. Thus, it is advisable to employ pooling when the expected prevalence level is below 21% and when the likely savings of up to 80% on reagent cost outweighs the increased materials and labor costs of up to 4 fold increases in pipetting.
Keyphrases
  • high throughput
  • risk factors
  • monte carlo
  • risk assessment
  • minimally invasive
  • deep learning
  • machine learning
  • data analysis