A Peptide-PNA Hybrid Beacon for Sensitive Detection of Protein Biomarkers in Biological Fluids.
Amlanjyoti DharIsrar AhmedShampa MallickSiddhartha RoyPublished in: Chembiochem : a European journal of chemical biology (2020)
Specific and rapid detection of proteins in biological fluids poses a challenging problem. In biological fluids, many proteins are present at low concentrations, requiring high affinity and specificity of the beacon-protein interaction. We report the design of a peptide-PNA hybrid beacon that exploits the dimeric nature of a target protein, S100B, a biomarker for brain trauma, to enhance binding affinity and specificity. The complementary base-pairing of the PNA bases brings the two arms of the beacon, one carrying an Alexa tag and the other carrying a Dabcyl moiety, into proximity, thus quenching Alexa fluorescence. Each of the arms carries a sequence that binds to one of the subunits. Binding to the target separates the quencher from the probe lifting the quenching of fluorescence. Enhanced affinity and specificity resulting from simultaneously binding to two sites allowed specific detection of S100B at low-nanomolar concentrations in the presence of serum. The design can be easily adapted for the detection of proteins containing multiple binding sites and could prove useful for rapid and sensitive biomarker detection.