Login / Signup

Photosensitized Dimerization of Tyrosine: The Oxygen Paradox†.

M Laura DántolaJael R Neyra ReckyCarolina LorenteAndrés H Thomas
Published in: Photochemistry and photobiology (2021)
In electron-transfer initiated photosensitization processes, molecular oxygen (O2 ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O2 does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr2 ). In the pterin (Ptr) photosensitized oxidation of Tyr, O2 does not directly participate in the formation of Tyr2 and quenches the triplet excited state of Ptr, the reactive species that initiates the process. However, O2 is necessary for the dimerization, phenomenon that we have named as the oxygen paradox. Here, we review the literature on the photosensitized formation of Tyr2 and present results of steady-state and time resolved experiments, in search of a mechanistic model to explain the contradictory role of O2 in this photochemical reaction system.
Keyphrases
  • electron transfer
  • hydrogen peroxide
  • nitric oxide
  • quantum dots