3D Anisotropic Au@Pt-Pd Hemispherical Nanostructures as Efficient Electrocatalysts for Methanol, Ethanol, and Formic Acid Oxidation Reaction.
Wenkai LiangYawen WangLiang ZhaoWei GuoDong LiWei QinHaihua WuYinghui SunLin JiangPublished in: Advanced materials (Deerfield Beach, Fla.) (2021)
Anisotropic 3D nanostructures exhibit excellent electrocatalytic activity and stability due to their heterogeneous elemental distribution and unsymmetrical configuration. However, it is still a huge challenge to combine anisotropically distributed elements and anisotropic morphologies within one 3D nanostructure. Herein, 3D Au@Pt-Pd hemispherical nanostructures (Au@Pt-Pd H-Ss) are fabricated as highly efficient electrocatalysts for oxidation reaction, which present heterogenous element distribution and anisotropic morphology. It is demonstrated that the non-uniform adsorption of BO2 - on Au-CTA+ surface, as well as the simulated lower formation energy of Pt-Pd atoms for Au-CTA+ -BO2 - , basically contribute to the eventual formation of Au@Pt-Pd H-Ss. Impressively, the unique anisotropic Au@Pt-Pd H-Ss exhibit superior electrocatalytic activity and durability for methanol, ethanol, and formic acid oxidation reaction compared with commercial Pt/C and previously reported noble-metal based electrocatalysts. Especially, the mass activity of Au@Pt-Pd H-Ss for MOR is 4.38 A mgPt+Pd -1 , which is about 2.0 and 4.7 times that of Au@Pt-Pd spherical nanostructures (Au@Pt-Pd Ss) and commercial Pt/C catalyst, respectively. This work provides an important reference for the design and preparation of 3D anisotropic and high-efficiency electrocatalysts.