Evaluation of Local Hybrid Functionals for Electric Properties: Dipole Moments and Static and Dynamic Polarizabilities.
Robin GrotjahnGregor J LauterMatthias HaaslerMartin KauppPublished in: The journal of physical chemistry. A (2020)
Local hybrid functionals are a class of exchange-correlation functionals that feature a real-space dependent admixture of exact (Hartree-Fock like) exchange governed by a local mixing function. Recently we reported the LH20t functional with wide chemical applicability and excellent performance for the GMTKN55 main-group energetics test suite (M. Haasler et al., J. Chem. Theory Comput. 2020, 16, 5645-5657). Here, we present a systematic evaluation of earlier and recent local hybrid functionals for large test sets of dipole moments and static polarizabilities and for a smaller set of dynamic polarizabilities for heterocycles. Comparisons with coupled-cluster benchmark data show robust performance of all investigated local hybrids for dipole moments and polarizabilities. The two best local hybrids are the new LH20t and LH14t-calPBE. LH20t gives a percentage-relative mean-square deviation of 5.87% for the dipole moment test set and one of 4.30% for static polarizabilities. This is only slightly inferior to the currently best performances among rung 4 functionals. Most notably, no large outliers are observed in contrast to some other hybrid functionals. This shows that the current most highly parametrized (nine-parameter) LH20t functional clearly produces not only good energetics but also accurate electron densities and electric-field responses. The influences of various aspects of local hybrids are examined to aid in the further development of this class of functionals.