Microneedle-mediated delivery of MIL-100(Fe) as a tumor microenvironment-responsive biodegradable nanoplatform for O2-evolving chemophototherapy.
Sulan LuoYiting ZhaoKewei PanYixian ZhouGuilan QuanXinguo WenXin PanChuanbin WuPublished in: Biomaterials science (2021)
The low oxygen level in tumors significantly reduces the antitumor efficacy of photodynamic therapy (PDT). The provision of O2 and monomeric hydrophobic photosensitizers (PSs) under physiological conditions would greatly help to shrink malignant tumors. We take advantage of the high porosity and multifunctionality of metal-organic frameworks (MOFs) to fabricate a simple all-in-one nanoplatform mediated by microneedle delivery to achieve synergistic O2 evolution and chemophototherapy. An iron(III)-based MOF (MIL-100(Fe)) acted not only as a vehicle for the concurrent delivery of zinc phthalocyanine (ZnPc) and doxorubicin hydrochloride (Dox), but also to supply O2 by decomposing hydrogen peroxide (H2O2) in the tumor microenvironment via a Fenton-like reaction. In vitro and in vivo experiments indicated that the nanoplatform had excellent biocompatibility and exerted enhanced anticancer effects. The encapsulated drug was sustainably released from the nanoplatform skeleton in response to acidic tumor microenvironments. Moreover, upon 660 nm light irradiation, ZnPc effectively produced reactive oxygen species (ROS) due to the reduction of hypoxia by MIL-100(Fe). A microneedle technique was adopted to directly deliver the nanoplatform into superficial tumors rather than via systemic circulation. Hence, this study provides a new strategy for more efficient chemophototherapy of hypoxic superficial tumors.