Login / Signup

Interfacing q-AQUA with a Polarizable Force Field: The Best of Both Worlds.

Chen QuQi YuPaul L HoustonRiccardo ConteApurba NandiJoel M Bowman
Published in: Journal of chemical theory and computation (2023)
Polarizable force fields are pervasive in the fields of computational chemistry and biochemistry; however, their empirical or semiempirical nature gives them both weaknesses and strengths. Here, we have developed a hybrid water potential, named q-AQUA-pol, by combining our recent ab initio q-AQUA potential with the TTM3-F water potential. The new potential demonstrates unprecedented accuracy ranging from gas-phase clusters, e.g., the eight low-lying isomers of the water hexamer, to the condensed phase, e.g., radial distribution functions, the self-diffusion coefficient, triplet OOO distribution, and the temperature dependence of the density. This represents a significant advancement in the field of polarizable machine learning potential and computational modeling.
Keyphrases
  • machine learning
  • human health
  • computed tomography
  • deep learning
  • risk assessment
  • artificial intelligence
  • ultrasound guided
  • contrast enhanced
  • drug discovery