Login / Signup

Mechanisms of Ca2+/calmodulin-dependent kinase II activation in single dendritic spines.

Jui-Yun ChangYoshihisa NakahataYuki HayanoRyohei Yasuda
Published in: Nature communications (2019)
CaMKIIα plays an essential role in decoding Ca2+ signaling in spines by acting as a leaky Ca2+ integrator with the time constant of several seconds. However, the mechanism by which CaMKIIα integrates Ca2+ signals remains elusive. Here, we imaged CaMKIIα-CaM association in single dendritic spines using a new FRET sensor and two-photon fluorescence lifetime imaging. In response to a glutamate uncaging pulse, CaMKIIα-CaM association increases in ~0.1 s and decays over ~3 s. During repetitive glutamate uncaging, which induces spine structural plasticity, CaMKIIα-CaM association did not show further increase but sustained at a constant level. Since CaMKIIα activity integrates Ca2+ signals over ~10 s under this condition, the integration of Ca2+ signal by CaMKIIα during spine structural plasticity is largely due to Ca2+/CaM-independent, autonomous activity. Based on these results, we propose a simple kinetic model of CaMKIIα activation in dendritic spines.
Keyphrases
  • protein kinase
  • single molecule
  • high frequency
  • living cells
  • energy transfer
  • tyrosine kinase