Machine learning for non-invasive sensing of hypoglycaemia while driving in people with diabetes.
Vera LehmannThomas ZuegerMartin MaritschMathias KrausCaroline AlbrechtCaterina BérubéStefan FeuerriegelFelix WortmannTobias KowatschNaïma StygerSophie LaggerMarkus LaimerElgar FleischChristoph StettlerPublished in: Diabetes, obesity & metabolism (2023)
Our findings suggest that an ML approach based on CAN and ET data, exclusively, enables detection of hypoglycaemia while driving. This provides a promising concept for alternative and non-invasive detection of hypoglycaemia.