Login / Signup

CSA-90 reduces periprosthetic joint infection in a novel rat model challenged with local and systemic Staphylococcus aureus.

Rebecca J MillsAlexandra BoylingTegan L ChengLauren PeacockPaul B SavageMagnus TägilDavid G LittleAaron Schindeler
Published in: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (2020)
Infection of orthopedic implants is a growing clinical challenge to manage due to the proliferation of drug-resistant bacterial strains. In this study, we aimed to investigate whether the treatment of implants with ceragenin-90 (CSA-90), a synthetic compound based on endogenous antibacterial peptides, could prevent infection in a novel rat model of periprosthetic joint infection (PJI) challenged with either local or systemic Staphylococcus aureus. A novel preclinical model of PJI was created using press-fit porous titanium implants in the distal femur of male Wistar rats. Sterile implants were pre-treated with 500 μg CSA-90 in saline. S. aureus was applied either directly at the time of surgery or administered via tail vein injection immediately afterward. Animals were monitored daily for clinical and radiographic evidence of infection for a total of 6 weeks. Post-study microbiological, radiographic, and histological analysis were performed to determine the incidence of PJI and assess osseointegration. CSA-90 treated groups demonstrated a reduced rate of PJI as confirmed by deep tissue swab culture at the time of cull compared with untreated groups with both local (33% vs 100%; P = .009) and systemic (10% vs 90%; P < .0001) S. aureus inoculation. Median survival time also increased from 8 to 17 days and from 8 to 42 days, respectively. In conclusion, this study describes a novel preclinical model of local and hematogenous PJI using a porous metal implant. CSA-90 reduced the incidence of PJI in this model supporting its further development as an antimicrobial coating for orthopedic implants.
Keyphrases