Login / Signup

A recombinant herpes virus expressing influenza hemagglutinin confers protection and induces antibody-dependent cellular cytotoxicity.

Katherine KaugarsJoseph DardickAnna Paula de OliveiraKayla A WeissRegy LukoseJohn KimLawrence LeungSaranathan RajagopalanSydney WolinLeor AkabasDavid M KnipeGoran BajicWilliam R Jacobs
Published in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Despite widespread yearly vaccination, influenza leads to significant morbidity and mortality across the globe. To make a more broadly protective influenza vaccine, it may be necessary to elicit antibodies that can activate effector functions in immune cells, such as antibody-dependent cellular cytotoxicity (ADCC). There is growing evidence supporting the necessity for ADCC in protection against influenza and herpes simplex virus (HSV), among other infectious diseases. An HSV-2 strain lacking the essential glycoprotein D (gD), was used to create ΔgD-2, which is a highly protective vaccine against lethal HSV-1 and HSV-2 infection in mice. It also elicits high levels of IgG2c antibodies that bind FcγRIV, a receptor that activates ADCC. To make an ADCC-eliciting influenza vaccine, we cloned the hemagglutinin (HA) gene from an H1N1 influenza A strain into the ΔgD-2 HSV vector. Vaccination with ΔgD-2::HAPR8 was protective against homologous influenza challenge and elicited an antibody response against HA that inhibits hemagglutination (HAI+), is predominantly IgG2c, strongly activates FcγRIV, and protects against influenza challenge following passive immunization of naïve mice. Prior exposure of mice to HSV-1, HSV-2, or a replication-defective HSV-2 vaccine (dl5-29) does not reduce protection against influenza by ΔgD-2::HAPR8 This vaccine also continues to elicit protection against both HSV-1 and HSV-2, including high levels of IgG2c antibodies against HSV-2. Mice lacking the interferon-α/β receptor and mice lacking the interferon-γ receptor were also protected against influenza challenge by ΔgD-2::HAPR8 Our results suggest that ΔgD-2 can be used as a vaccine vector against other pathogens, while also eliciting protective anti-HSV immunity.
Keyphrases
  • herpes simplex virus
  • dendritic cells
  • infectious diseases
  • type diabetes
  • wild type
  • gene expression
  • oxidative stress
  • genome wide
  • multidrug resistant
  • skeletal muscle
  • regulatory t cells