Login / Signup

Spatial variation of changes in test-retest reliability of functional connectivity after global signal regression: The effect of considering hemodynamic delay.

Timothy J WangerAmy C JanesBlaise deB Frederick
Published in: Human brain mapping (2022)
Global signal regression (GSR) is a controversial analysis method, since its removal of signal has been observed to reduce the reliability of functional connectivity estimates. Here, we used test-retest reliability to characterize potential differences in spatial patterns between conventional, static GSR (sGSR) and a novel dynamic form of GSR (dGSR). In contrast with sGSR, dGSR models the global signal at a time delay to correct for blood arrival time. Thus, dGSR accounts for greater variation in global signal, removes blood-flow-related nuisance signal, and leaves higher quality neuronal signal remaining. We used intraclass correlation coefficients (ICCs) to estimate the reliability of functional connectivity in 462 healthy controls from the Human Connectome Project. We tested across two factors: denoising method used (control, sGSR, and dGSR), and interacquisition interval (between days, or within session while varying phase encoding direction). Reliability was estimated regionally to identify topographic patterns for each condition. sGSR and dGSR provided global reductions in reliability compared with the non-GSR control. Test-retest reliability was highest in the frontoparietal and default mode regions, and lowest in sensorimotor cortex for all conditions. dGSR provides more effective denoising in regions where both strategies greatly reduce reliability. Both GSR methods substantially reduced test-retest reliability, which was most evident in brain regions that had low reliability prior to denoising. These findings suggest that reliability of interregional correlation is likely inflated by the global signal, which is thought to primarily reflect dynamic blood flow.
Keyphrases
  • functional connectivity
  • resting state
  • blood flow
  • magnetic resonance
  • machine learning
  • climate change
  • white matter
  • brain injury
  • working memory
  • data analysis