Login / Signup

Intrinsic Instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study.

Zewen XiaoKe-Zhao DuWeiwei MengJianbo WangDavid B MitziYanfa Yan
Published in: Journal of the American Chemical Society (2017)
Recently, there has been substantial interest in developing double-B-cation halide perovskites, which hold the potential to overcome the toxicity and instability issues inherent within emerging lead halide-based solar absorber materials. Among all double perovskites investigated, In(I)-based Cs2InBiCl6 and Cs2InSbCl6 have been proposed as promising thin-film photovoltaic absorber candidates, with computational examination predicting suitable materials properties, including direct bandgap and small effective masses for both electrons and holes. In this study, we report the intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites by a combination of density functional theory and experimental study. Our results suggest that the In(I)-based double perovskites are unstable against oxidation into In(III)-based compounds. Further, the results show the need to consider reduction-oxidation (redox) chemistry when predicting stability of new prospective electronic materials, especially when less common oxidation states are involved.
Keyphrases
  • density functional theory
  • solar cells
  • molecular dynamics
  • hydrogen peroxide
  • oxidative stress
  • magnetic resonance
  • electron transfer
  • drug discovery
  • mass spectrometry
  • contrast enhanced ultrasound