Login / Signup

Ethylene Glycol Dicyclopentenyl (Meth)Acrylate Homo and Block Copolymers via Nitroxide Mediated Polymerization.

Alexandre MaupuYara KanawatiAdrien MétafiotMilan Maric
Published in: Materials (Basel, Switzerland) (2019)
Nitroxide-mediated polymerization (NMP), (homo and block copolymerization with styrene (S) and butyl methacrylate/S) of ethylene glycol dicyclopentenyl ether (meth)acrylates (EGDEA and EGDEMA) was studied using BlocBuilder alkoxyamines. EGDEA homopolymerization was not well-controlled, independent of temperature (90-120 °C), or additional free nitroxide (0-10 mol%) used. Number average molecular weights (Mn) achieved for poly(EGDEA) were 4.0-9.5 kg mol-1 and were accompanied by high dispersity (Ð = Mw/Mn = 1.62-2.09). Re-initiation and chain extension of the poly(EGDEA) chains with styrene (S) indicated some block copolymer formation, but a high fraction of chains were terminated irreversibly. EGDEA-stat-S statistical copolymerizations with a low mol fraction S in initial feed, fS,0 = 0.05, were slightly better controlled compared to poly(EGDEA) homopolymerizations (Ð was reduced to 1.44 compared to 1.62 at similar conditions). EGDEMA, in contrast, was successfully polymerized using a small fraction of S (fS,0 ~ 10 mol%) to high conversion (72%) to form well-defined EGDEMA-rich random copolymer (molar composition = FEGDEMA = 0.87) of Mn = 14.3 kg mol-1 and Ð = 1.38. EGDEMA-rich compositions were also polymerized with the unimolecular succinimidyl ester form of BlocBuilder initiator, NHS-BlocBuilder with similar results, although Ðs were higher ~1.6. Chain extensions resulted in monomodal shifts to higher molecular weights, indicating good chain end fidelity.
Keyphrases
  • room temperature
  • magnetic resonance
  • transition metal
  • patient safety
  • magnetic resonance imaging
  • drug release
  • solid state