Abundance and Antimicrobial Resistance of Three Bacterial Species along a Complete Wastewater Pathway.
Ilse VerburgSilvia García-CobosLucia Hernández LealKarola WaarAlex W FriedrichHeike SchmittPublished in: Microorganisms (2019)
After consumption, antibiotic residues and exposed bacteria end up via the feces in wastewater, and therefore wastewater is believed to play an important role in the spread of antimicrobial resistance (AMR). We investigated the abundance and AMR profiles of three different species over a complete wastewater pathway during a one-year sampling campaign, as well as including antimicrobial consumption and antimicrobial concentrations analysis. A total of 2886 isolates (997 Escherichia coli, 863 Klebsiella spp., and 1026 Aeromonas spp.) were cultured from the 211 samples collected. The bacterial AMR profiles mirrored the antimicrobial consumption in the respective locations, which were highest in the hospital. However, the contribution of hospital wastewater to AMR found in the wastewater treatment plant (WWTP) was below 10% for all antimicrobials tested. We found high concentrations (7-8 logs CFU/L) of the three bacterial species in all wastewaters, and they survived the wastewater treatment (effluent concentrations were around 5 log CFU/L), showing an increase of E. coli in the receiving river after the WWTP discharge. Although the WWTP had no effect on the proportion of AMR, bacterial species and antimicrobial residues were still measured in the effluent, showing the role of wastewater contamination in the environmental surface water.