The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance.
Mohamed S BarakatMatthew FieldAditya GhoseDavid StirlingLois HollowayShalini VinodAndre DekkerDavid ThwaitesPublished in: Health information science and systems (2017)
According to the estimations of the World Health Organization and the International Agency for Research in Cancer, lung cancer is the most common cause of death from cancer worldwide. The last few years have witnessed a rise in the attention given to the use of clinical decision support systems in medicine generally and in cancer in particular. These can predict patients' likelihood of survival based on analysis of and learning from previously treated patients. The datasets that are mined for developing clinical decision support functionality are often incomplete, which adversely impacts the quality of the models developed and the decision support offered. Imputing missing data using a statistical analysis approach is a common method to addressing the missing data problem. This work investigates the effect of imputation methods for missing data in preparing a training dataset for a Non-Small Cell Lung Cancer survival prediction model using several machine learning algorithms. The investigation includes an assessment of the effect of imputation algorithm error on performance prediction and also a comparison between using a smaller complete real dataset or a larger dataset with imputed data. Our results show that even when the proportion of records with some missing data is very high (> 80%) imputation can lead to prediction models with an AUC (0.68-0.72) comparable to those trained with complete data records.
Keyphrases
- electronic health record
- clinical decision support
- machine learning
- big data
- end stage renal disease
- papillary thyroid
- ejection fraction
- newly diagnosed
- chronic kidney disease
- prognostic factors
- deep learning
- squamous cell carcinoma
- artificial intelligence
- data analysis
- squamous cell
- free survival
- childhood cancer
- lymph node metastasis
- working memory
- quality improvement
- young adults