Login / Signup

Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase.

Shu-Min WangMengna HuangJianhao HuaLin WeiShen LinLehui Xiao
Published in: Nanoscale (2021)
Alkaline phosphatase (ALP) as a necessary hydrolase in phosphate metabolism is closely related to various diseases. Ultrasensitive detection of ALP with a convenient and sensitive method is of fundamental importance. In this work, a fluorescence resonance energy transfer (FRET)-based single-particle enumeration (SPE) method is proposed for the quantitative analysis of ALP. This strategy is based on the effective fluorescence suppression by a polydopamine (PDA) shell on the surface of semiconducting polymer nanoparticles (SPNs). PDA with broadband absorption in the UV-vis region can serve as an excellent quencher for SPNs. However, ascorbic acid (AA), the product of the hydrolysis of 2-phosphate-l-ascorbic acid trisodium salt (AAP) in the presence of ALP, can effectively inhibit the self-polymerization of dopamine (DA) to form a PDA layer. Therefore, ALP can be accurately quantified by counting the concentration-related fluorescent particles in the fluorescence image. A linear range from 0.031 to 12.4 μU mL-1 and a limit-of-detection (LOD) of 0.01 μU mL-1 for ALP determination are achieved. The spiked recoveries for ALP determination in a human serum sample are between 90% and 108% with RSD less than 3.1%. In summary, this convenient and sensitive approach proposed here provides promising prospects for ALP detection in a complex biological matrix.
Keyphrases
  • energy transfer
  • quantum dots
  • label free
  • loop mediated isothermal amplification
  • single molecule
  • real time pcr
  • gold nanoparticles
  • high resolution
  • ms ms
  • drug induced