Login / Signup

In silicomuscle volume conduction study validatesin vivomeasurement of tongue volume conduction properties using a user tongue array depressor.

Xuesong LuoBenjamin Sanchez
Published in: Physiological measurement (2021)
Objective.Electrophysiological assessment of the tongue volume conduction properties (VCPs) using our novel multi-electrode user tongue array (UTA) depressor has the promise to serve as a biomarker in patients with bulbar dysfunction. However, whetherin vivodata collected using the UTA depressor accurately reflect the tongue VCPs remains unknown.Approach.To address this question, we performedin silicosimulations of the depressor with an accurate anatomical tongue finite element model (FEM) using healthy human tongue VCP values, namely the conductivity and the relative permittivity, in the sagittal plane (i.e. longitudinal direction) and axial and coronal planes (i.e. transverse directions). We then established the relationship between tongue VCP values simulated from our model to measured human data.Main results.Experimental versus simulated tongue VCP values including their spatial variation were in good agreement with differences well within the variability of the experimental results. Tongue FEM simulations corroborate the feasibility of our UTA depressor in assessing tongue VCPs.Significance.The UTA depressor is a new non-invasive and safe tool to measure tongue VCPs. These electrical properties reflect the tongue's ionic composition and cellular membrane integrity and could serve as a novel electrophysiological biomarker in neurological disorders affecting the tongue.
Keyphrases
  • endothelial cells
  • high resolution
  • machine learning
  • artificial intelligence
  • subarachnoid hemorrhage
  • deep learning