Antegrade Posterior Column Acetabulum Fracture Screw Fixation via Posterior Approach: A Biomechanical Comparative Study.
Till BerkIvan ZdericPeter SchwarzenbergLudmil DrenchevHristo Kostov SkulevRoman PfeiferTatjana PastorRobert Geoffrey RichardsBoyko GueorguievHans-Christoph PapePublished in: Medicina (Kaunas, Lithuania) (2023)
Background and Objectives : Minimally invasive surgeries for acetabulum fracture fixation are gaining popularity due to their known advantages versus open reduction and internal fixation. Antegrade or retrograde screw fixation along the long axis of the posterior column of the acetabulum is increasingly applied in surgical practice. While there is sufficient justification in the literature for the application of the anterior approach, there is a deficit of reports related to the posterior approach. The aim of this study was to evaluate the biomechanical competence of posterior column acetabulum fracture fixation through antegrade screw placement using either a standard cannulated screw or a cannulated compression headless screw (CCHS) via posterior approach. Materials and Methods : Eight composite pelvises were used, and a posterior column acetabulum fracture according to the Letournel Classification was simulated on both their left and right sides via an osteotomy. The sixteen hemi-pelvic specimens were assigned to two groups ( n = 8) for either posterior column standard screw (group PCSS) or posterior column CCHS (group PCCH) fixation. Biomechanical testing was performed by applying steadily increased cyclic load until failure. Interfragmentary movements were investigated by means of motion tracking. Results : Initial stiffness demonstrated significantly higher values in PCCH (163.1 ± 14.9 N/mm) versus PCSS (133.1 ± 27.5 N/mm), p = 0.024. Similarly, cycles and load at failure were significantly higher in PCCH (7176.7 ± 2057.0 and 917.7 ± 205.7 N) versus PCSS (3661.8 ± 1664.5 and 566.2 ± 166.5 N), p = 0.002. Conclusion : From a biomechanical perspective, CCHS fixation demonstrates superior stability and could be a valuable alternative option to the standard cannulated screw fixation of posterior column acetabulum fractures, thus increasing the confidence in postoperative full weight bearing for both the patient and treating surgeon. Whether uneventful immediate postoperative full weight bearing can be achieved with CCHS fixation should primarily be investigated in further human cadaveric studies with a larger sample size.