Objective . Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive tool for assessing breast cancer by analyzing tumor blood flow, but it requires gadolinium-based contrast agents, which carry risks such as brain retention and astrocyte migration. Contrast-free MRI is thus preferable for patients with renal impairment or who are pregnant. This study aimed to investigate the feasibility of generating contrast-enhanced MR images from precontrast images and to evaluate the potential use of synthetic images in diagnosing breast cancer. Approach . This retrospective study included 322 women with invasive breast cancer who underwent preoperative DCE-MRI. A generative adversarial network (GAN) based postcontrast image synthesis (GANPIS) model with perceptual loss was proposed to generate contrast-enhanced MR images from precontrast images. The quality of the synthesized images was evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The diagnostic performance of the generated images was assessed using a convolutional neural network to predict Ki-67, luminal A and histological grade with the area under the receiver operating characteristic curve (AUC). The patients were divided into training ( n = 200), validation ( n = 60), and testing sets ( n = 62). Main results . Quantitative analysis revealed strong agreement between the generated and real postcontrast images in the test set, with PSNR and SSIM values of 36.210 ± 2.670 and 0.988 ± 0.006, respectively. The generated postcontrast images achieved AUCs of 0.918 ± 0.018, 0.842 ± 0.028 and 0.815 ± 0.019 for predicting the Ki-67 expression level, histological grade, and luminal A subtype, respectively. These results showed a significant improvement compared to the use of precontrast images alone, which achieved AUCs of 0.764 ± 0.031, 0.741 ± 0.035, and 0.797 ± 0.021, respectively. Significance . This study proposed a GAN-based MR image synthesis method for breast cancer that aims to generate postcontrast images from precontrast images, allowing the use of contrast-free images to simulate kinetic features for improved diagnosis.
Keyphrases
- contrast enhanced
- convolutional neural network
- deep learning
- magnetic resonance imaging
- diffusion weighted
- magnetic resonance
- computed tomography
- optical coherence tomography
- diffusion weighted imaging
- blood flow
- machine learning
- pregnant women
- risk assessment
- patients undergoing
- newly diagnosed
- white matter
- working memory
- neoadjuvant chemotherapy
- quality improvement
- clinical evaluation