Login / Signup

The retinal oxygen metabolism and hemodynamics as a substitute for biochemical tests to predict nonproliferative diabetic retinopathy.

Chuanqing ZhouZixia ZhouXimeng FengDa ZouYilin ZhouBin ZhangJiabao ChenFei WangDingying LiaoJinying LiZi JinQiushi Ren
Published in: Journal of biophotonics (2024)
Predicting the occurrence of nonproliferative diabetic retinopathy (NPDR) using biochemical parameters is invasive, which limits large-scale clinical application. Noninvasive retinal oxygen metabolism and hemodynamics of 215 eyes from 73 age-matched healthy subjects, 90 diabetic patients without DR, 40 NPDR, and 12 DR with postpanretinal photocoagulation were measured with a custom-built multimodal retinal imaging device. Diabetic patients underwent biochemical examinations. Two logistic regression models were developed to predict NPDR using retinal and biochemical metrics, respectively. The predictive model 1 using retinal metrics incorporated male gender, insulin treatment condition, diastolic duration, resistance index, and oxygen extraction fraction presented a similar predictive power with model 2 using biochemical metrics incorporated diabetic duration, diastolic blood pressure, and glycated hemoglobin A1c (area under curve: 0.73 vs. 0.70; sensitivity: 76% vs. 68%; specificity: 64% vs. 62%). These results suggest that retinal oxygen metabolic and hemodynamic biomarkers may replace biochemical parameters to predict the occurrence of NPDR .
Keyphrases