Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered via Ice Templating.
Luis EstevezVenkateshkumar PrabhakaranAdam L GarciaYongsoon ShinJinhui TaoAshleigh M SchwarzJens DarsellPriyanka BhattacharyaVaithiyalingam ShutthanandanJi-Guang ZhangPublished in: ACS nano (2017)
Developing hierarchical porous carbon (HPC) materials with competing textural characteristics such as surface area and pore volume in one material is difficult to accomplish, particularly for an atomically ordered graphitic carbon. Herein we describe a synthesis strategy to engineer tunable HPC materials across micro-, meso-, and macroporous length scales, allowing the fabrication of a graphitic HPC material (HPC-G) with both very high surface area (>2500 m2/g) and pore volume (>11 cm3/g), the combination of which has not been attained previously. The mesopore volume alone for these materials is up to 7.53 cm3/g, the highest ever reported, higher than even any porous carbon's total pore volume, which for our HPC-G material was >11 cm3/g. This HPC-G material was explored for use both as a supercapacitor electrode and for oil adsorption, two applications that require either high surface area or large pore volume, textural properties that are typically exclusive to one another. We accomplished these high textural characteristics by employing ice templating not only as a route for macroporous formation but as a synergistic vehicle that enabled the significant loading of the mesoporous hard template. This design scheme for HPC-G materials can be utilized in broad applications, including electrochemical systems such as batteries and supercapacitors, sorbents, and catalyst supports, particularly supports where a high degree of thermal stability is required.