Login / Signup

Molecular evaluation and phenotypic screening of brown and orange rust in Saccharum germplasm.

Gleicy Kelly OliveiraFernanda Zatti BarretoThiago Willian Almeida BalsalobreRoberto Giacomini ChapolaHermann Paulo HoffmannMonalisa Sampaio Carneiro
Published in: PloS one (2024)
Brazil is the largest global producer of sugarcane and plays a significant role-supplier of sugar and bioethanol. However, diseases such as brown and orange rust cause substantial yield reductions and economic losses, due decrease photosynthesis and biomass in susceptible cultivars. Molecular markers associated with resistance genes, such as Bru1 (brown rust) and G1 (orange rust), could aid in predicting resistant genotypes. In this study, we sought to associate the phenotypic response of 300 sugarcane accessions with the genotypic response of Bru1 and G1 markers. The field trials were conducted in a randomized block design, and five six-month-old plants per plot were evaluated under natural disease conditions. Genotypic information about the presence or absence of Bru1 (haplotype 1) and G1 gene was obtained after extraction of genomic DNA and conventional PCR. Of the total accessions evaluated, 60.3% (181) showed resistance to brown rust in the field, and of these, 70.7% (128) had the Bru1 gene present. Considering the field-resistant accessions obtained from Brazilian breeding programs (116), the Bru1 was present in 77,6% of these accessions. While alternative resistance sources may exist, Bru1 likely confers enduring genetic resistance in current Brazilian cultivars. Regarding the phenotypic reaction to orange rust, the majority of accessions, 96.3% (288), were field resistant, and of these, 52.7% (152) carried the G1 marker. Although less efficient for predicting resistance when compared to Bru1, the G1 marker could be part of a quantitative approach when new orange rust resistance genes are described. Therefore, these findings showed the importance of Bru1 molecular markers for the early selection of resistant genotypes to brown rust by genetic breeding programs.
Keyphrases
  • genome wide
  • copy number
  • public health
  • genome wide identification
  • single molecule
  • healthcare
  • drinking water
  • social media