Construction of Porous Polyureas and Polyamides via Domino Polymerization and Their High-Efficiency Au(III) Adsorption.
Yujie LeiYunxia XiaWangzhi ChenBo LinTiesheng LiLei LiPublished in: Macromolecular rapid communications (2022)
The adoption of new synthesis strategy and monomers significantly promotes the construction of porous organic polymers (POPs) and their promising applications. A fabricating method of porous polyimides is developed via sequential imidization and cross-linking reaction among self-condensable building blocks, as reported in the authors' previous manuscript. Here, porous polyureas (A-POPs) are prepared starting from 4-ethynylaniline and diisocyanate monomers, while porous polyamides (B-POPs) are synthesized from 4-ethynylbenzoic acid and diisocyanate monomers. It is found that decreasing the monomer content in solvent can effectively inhibit the premature phase separation and facilitate the evolution of integrated network. Eventually, a maximum surface area of 425 m 2 g -1 is achieved for porous polyureas when the content of monomers is 10%. To the best knowledge, A-POPs are the porous polyureas with the highest surface areas reported up to now. The as-prepared porous polyurea (AN-POP) exhibits the maximum adsorption capacity of 1093.87 ± 5.23 mg g -1 and removal rate of 99.96% for Au(III), due to its high surface area and the coordination between the heteroatoms (N and O) in A-POPs and metal ions. Besides, the porous polyurea also exhibits excellent renewable efficiency and high selectivity to Au(III).