Login / Signup

Matching-range-constrained real-time loop closure detection with CNNs features.

Dongdong BaiChaoqun WangBo ZhangXiaodong YiYuhua Tang
Published in: Robotics and biomimetics (2016)
The loop closure detection (LCD) is an essential part of visual simultaneous localization and mapping systems (SLAM). LCD is capable of identifying and compensating the accumulation drift of localization algorithms to produce an consistent map if the loops are checked correctly. Deep convolutional neural networks (CNNs) have outperformed state-of-the-art solutions that use traditional hand-crafted features in many computer vision and pattern recognition applications. After the great success of CNNs, there has been much interest in applying CNNs features to robotic fields such as visual LCD. Some researchers focus on using a pre-trained CNNs model as a method of generating an image representation appropriate for visual loop closure detection in SLAM. However, there are many fundamental differences and challenges involved in character between simple computer vision applications and robotic applications. Firstly, the adjacent images in the dataset of loop closure detection might have more resemblance than the images that form the loop closure. Secondly, real-time performance is one of the most critical demands for robots. In this paper, we focus on making use of the feature generated by CNNs layers to implement LCD in real environment. In order to address the above challenges, we explicitly provide a value to limit the matching range of images to solve the first problem; meanwhile we get better results than state-of-the-art methods and improve the real-time performance using an efficient feature compression method.
Keyphrases