Login / Signup

Land use diversification may mitigate on-site land use impacts on mammal populations and assemblages.

Koen J J KuipersSarah SimJelle P HilbersStefanie K van den BergMelinda M J de JongeKrista TrendafilovaMark A J HuijbregtsAafke M Schipper
Published in: Global change biology (2023)
Land use is a major cause of biodiversity decline worldwide. Agricultural and forestry diversification measures, such as the inclusion of natural elements or diversified crop types, may reduce impacts on biodiversity. However, the extent to which such measures may compensate for the negative impacts of land use remains unknown. To fill that gap, we synthesised data from 99 studies that recorded mammal populations or assemblages in natural reference sites and in cropland and forest plantations, with or without diversification measures. We quantified the responses to diversification measures based on individual species abundance, species richness and assemblage intactness as quantified by the mean species abundance indicator. In cropland with natural elements, mammal species abundance and richness were, on average, similar to natural conditions, while in cropland without natural elements they were reduced by 28% and 34%, respectively. We found that mammal species richness was comparable between diversified forest plantations and natural reference sites, and 32% lower in plantations without natural elements. In both cropland and plantations, assemblage intactness was reduced compared with natural reference conditions, but the reduction was smaller if diversification measures were in place. In addition, we found that responses to land use were modified by species traits and environmental context. While habitat specialist populations were reduced in cropland without diversification and in forest plantations, habitat generalists benefited. Furthermore, assemblages were impacted more by land use in tropical regions and landscapes containing a larger share of (semi)natural habitat compared with temperate regions and more converted landscapes. Given that mammal assemblage intactness is reduced also when diversification measures are in place, special attention should be directed to species that suffer from land use impacts. That said, our results suggest potential for reconciling land use and mammal conservation, provided that the diversification measures do not compromise yield.
Keyphrases
  • climate change
  • genetic diversity
  • human health
  • palliative care
  • genome wide
  • microbial community
  • wastewater treatment