Stochastic bursting in networks of excitable units with delayed coupling.
Chunming ZhengArkady PikovskyPublished in: Biological cybernetics (2021)
We investigate the phenomenon of stochastic bursting in a noisy excitable unit with multiple weak delay feedbacks, by virtue of a directed tree lattice model. We find statistical properties of the appearing sequence of spikes and expressions for the power spectral density. This simple model is extended to a network of three units with delayed coupling of a star type. We find the power spectral density of each unit and the cross-spectral density between any two units. The basic assumptions behind the analytical approach are the separation of timescales, allowing for a description of the spike train as a point process, and weakness of coupling, allowing for a representation of the action of overlapped spikes via the sum of the one-spike excitation probabilities.