Login / Signup

Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically "charge-discharge" electrolyte.

Guangli LiSizhe WangMingzhe LiYanwen Y Duan
Published in: Journal of neural engineering (2021)
A novel polyacrylamide/polyvinyl alcohol superporous hydrogel (PAAm/PVA SPH)-based semi-dry electrode was constructed for capturing EEG signals at the hairy scalp, showing automatically "charge-discharge" electrolyte concept in EEG electrode development. In this regard, PAAm/PVA SPH was polymerized in-situ in the hollow electrode cavity by freezing polymerization, which acted as a dynamic reservoir of electrolyte fluid. The superporous hydrogel can be completely "charged" with electrolyte fluid, such as saline, in just a few seconds and can be "discharged" through a few tiny pillars into the scalp at a desirable rate. In this way, an ideal local skin hydration effect was achieved at electrode-skin contact sites, facilitating the bioelectrical signal pathway and significantly reducing electrode-skin impedance. Moreover, the electrode interface effectively avoids short circuit and inconvenient issues. The results show that the semi-dry electrode displayed low and stable contact impedance, showing non-polarization properties with low off-set potential and negligible potential drift. The average temporal cross-correlation coefficient between the semi-dry and conventional wet electrodes was 0.941. Frequency spectra also showed almost identical responses with anticipated neural electrophysiology responses. Considering prominent advantages such as a rapid setup, robust signal, and user-friendliness, the new concept of semi-dry electrodes shows excellent potential in emerging real-life EEG applications.
Keyphrases