Login / Signup

S-Carboxyanhydrides: Ultrafast and Selective Ring-Opening Polymerizations Towards Well-defined Functionalized Polythioesters.

Yanchao WangMaosheng LiShixue WangYouhua TaoXianhong Wang
Published in: Angewandte Chemie (International ed. in English) (2021)
Aliphatic polythioesters are popular polymers because of their appealing performance such as metal coordination ability, high refractive indices, and biodegradability. One of the most powerful approaches for generating these polymers is the ring-opening polymerization (ROP) of cyclic monomers. However, the synthesis of precisely controlled polythioesters via ROP of thiolactones still faces formidable challenges, including the minimal functional diversity of available thiolactone monomers, as well as inevitable transthioesterification side reactions. Here we introduce a hyperactive class of S-carboxyanhydride (SCA) monomers derived from amino acids that are significantly more reactive than thiolactones for ultrafast and selective ROP. Inclusion of the initiator PPNOBz ([PPN]=bis(triphenylphosphine)-iminium) with chain transfer agent benzoic acid, the polymerizations that can be operated in open vessels reach complete conversion within minutes (1-2 min) at room temperature, yielding polythioesters with predictable molecular weight, low dispersities, retained stereoregularity and chemical recyclability. Most fascinating are the functionalized SCAs that allow the incorporating of functional groups along the polythioester chain and thus finely tune their physicochemical performance. Computational studies were carried out to explore the origins of the distinctive rapidity and exquisite selectivity of the polymerizations, offering mechanistic insight and explaining why high polymerizability of SCA monomer is able to facilitate exquisitely selective ring-opening for enchainment over competing transthioesterification and backbiting reactions.
Keyphrases
  • room temperature
  • ionic liquid
  • molecularly imprinted
  • quantum dots
  • amino acid
  • minimally invasive
  • energy transfer
  • tandem mass spectrometry
  • liquid chromatography