Login / Signup

Aggregation hot spots in the SARS-CoV-2 proteome may constitute potential therapeutic targets for the suppression of the viral replication and multiplication.

Shalini GourJay Kant Yadav
Published in: Journal of proteins and proteomics (2021)
The emergence of novel coronavirus SARS-CoV-2 is responsible for causing coronavirus disease-19 (COVID-19) imposing serious threat to global public health. Infection of SARS-CoV-2 to the host cell is characterized by direct translation of positive single stranded (+ ss) RNA to form large polyprotein polymerase 1ab (pp1ab), which acts as precursor for a number of nonstructural and structural proteins that play vital roles in replication of viral genome and biosynthesis of new virus particles. The maintenance of viral protein homeostasis is essential for continuation of viral life cycle in the host cell. To test whether the protein homeostasis of SARS-CoV-2 can be disrupted by inducing specific protein aggregation, we made an effort to examine whether the viral proteome contains any aggregation prone regions (APRs) that can be explored for inducing toxic protein aggregation specifically in viral proteins and without affecting the host cell. This curiosity leads to the identification of several (> 70) potential APRs in SARS-CoV-2 proteome. The length of the APRs ranges from 5 to 25 amino acid residues. Nearly 70% of total APRs investigated are relatively smaller and found to be in the range of 5-10 amino acids. The maximum number of ARPs (> 50) was observed in pp1ab. On the other hand, the structural proteins such as, spike (S), nucleoprotein (N), membrane (M) and envelope (E) proteins also possess APRs in their primary structures which altogether constitute 30% of the total APRs identified. Our findings may provide new windows of opportunities to design specific peptide-based, anti-SARS-CoV-2 therapeutic molecules against COVID-19.
Keyphrases