Login / Signup

Association of Hydrophobic Carboxyl-Terminal Dendrimers with Lymph Node-Resident Lymphocytes.

Yutaka NishimotoMisaki NishioShu NagashimaKohei NakajimaTakayuki OhiraShinya NakaiIkuhiko NakaseKei HigashikawaYuji KugeAkikazu MatsumotoMikako OgawaChie Kojima
Published in: Polymers (2020)
Delivery systems to lymph node-resident T cells around tumor tissues are essential for cancer immunotherapy, in order to boost the immune responses. We previously reported that anionic dendrimers, such as carboxyl-, sulfonyl-, and phosphate-terminal dendrimers, were efficiently accumulated in lymph nodes via the intradermal injection. Depending on the terminal structure, their cell association properties were different, and the carboxyl-terminal dendrimers did not associate with any immune cells majorly. In this study, we investigated the delivery of carboxyl-terminal dendrimers with different hydrophobicity to lymph node-resident lymphocytes. Four types of carboxyl-terminal dendrimers-succinylated (C) and 2-carboxy-cyclohexanoylated (Chex) dendrimers with and without phenylalanine (Phe)-were synthesized and named C-den, C-Phe-den, Chex-den, and Chex-Phe-den, respectively. Chex-Phe-den was well associated with lymphocytes, but others were not. Chex-Phe-den, intradermally injected at the footpads of mice, was accumulated in the lymph node, and was highly associated with the lymphocytes, including T cells. Our results suggest that Chex-Phe-den has the potential for delivery to the lymph node-resident T cells, without any specific T cell-targeted ligands.
Keyphrases