Fabrication of In Situ-Cross-Linked N-Succinyl Chitosan/Oxidized Alginate Hydrogel-Loaded Ascorbic Acid and Biphasic Calcium Phosphate for Bone Tissue Engineering.
Thanh-Thuong Le DuongBinh Thanh VuHanh Thi-Kieu TaQuan Minh VoThanh Dinh LeThi-Hiep NguyenPublished in: Biopolymers (2024)
Bone tissue engineering is a promising technology being studied globally to become an effective and sustainable method to treat the problems of damaged or diseased bones. In this work, we developed an in situ cross-linking hydrogel system that combined N-succinyl chitosan (NSC) and oxidized alginate (OA) at varying mixing ratios through Schiff base cross-linking. The hydrogel system also contains biphasic calcium phosphate (BCP) and ascorbic acid (AA), which could enhance biological characteristics and accelerate bone repair. The hydrogels' properties were examined through physicochemical tests such as scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), pore size and porosity measurement, swelling ratio, degradation rate, AA release study, as well as cytocompatibility, including live/dead and cytotoxicity assays. The results revealed that the supplementation of AA and BCP components can affect the physico-mechanical properties of the hydrogel system. However, they exhibited noncytotoxic properties. Overall, the results demonstrated that the hydrogel composed of 3% (w/v) NSC and 3% (w/v) OA (NSC: OA volume ratio is 8:2) loaded with 40% (w/w) BCP and 0.3 mg/mL AA has the potential for bone regeneration.
Keyphrases
- tissue engineering
- electron microscopy
- bone regeneration
- drug delivery
- wound healing
- high resolution
- bone mineral density
- knee osteoarthritis
- cancer therapy
- hyaluronic acid
- mental health
- bone loss
- soft tissue
- ionic liquid
- magnetic resonance imaging
- magnetic resonance
- computed tomography
- solid state
- extracellular matrix
- solid phase extraction