Modular-Based Integrated Microsystem with Multiple Sample Preparation Modules for Automated Forensic DNA Typing from Reference to Challenging Samples.
Yin GuBin ZhuangJunping HanYi LiXiaoyu SongXinying ZhouLei WangPeng LiuPublished in: Analytical chemistry (2019)
The realization of an automated short tandem repeat (STR) analysis for forensic investigations is facing a unique challenge, that is DNA evidence with wide disparities in sample types, quality, and quantity. We developed a fully integrated microsystem in a modular-based architecture to accept and process various forensic samples in a "sample-in-answer-out" manner for forensic STR analysis. Two sample preparation modules (SPMs), the direct and the extraction SPM, were designed to be easily assembled with a capillary array electrophoresis (CAE) chip using a chip cartridge to efficiently achieve an adequate performance to different samples at a low cost. The direct SPM processed buccal swabs to produce STR profiles without DNA extraction in about 2 h. The extraction SPM analyzed more challenging blood samples based on chitosan-modified quartz filter paper for DNA extraction. This newly developed quartz filter provided a 90% DNA extraction efficiency and the "in situ" PCR capability, which enabled DNA extraction and PCR performed within a single chamber with all the DNA concentrated in the filter. We demonstrated that minute amounts of blood (0.25 μL), highly diluted blood (0.5 μL blood in 1 mL buffer), and latent bloodstains (5-μL bloodstain on cloth washed with detergent) can be automatically analyzed using our microsystem, reliably producing full STR profiles with a 100% calling of all the alleles. This modular-based microsystem with the capability of analyzing a wide range of samples should be able to play an increasing role in both urgent situations and routine forensic investigations, dramatically extending the applications and utility of automated DNA typing.