Login / Signup

A Metal-Organic Framework-Incorporated Hydrogel for Delivery of Immunomodulatory Neobavaisoflavone to Promote Cartilage Regeneration in Osteoarthritis.

Yanan JiangHaixia LiaoLiwei YanShengxi JiangYujia ZhengXin ZhangKefeng WangQi Guang WangLu HanXiong Lu
Published in: ACS applied materials & interfaces (2023)
The treatment of osteoarthritis (OA)-related cartilage defects is a great clinical challenge due to the complex pathogenesis of OA and poor self-repair ability of cartilage tissue. Combining local and long-term anti-inflammatory therapies to promote cartilage repair is an effective method to treat OA. In this study, a zinc-organic framework-incorporated extracellular matrix (ECM)-mimicking hydrogel platform was constructed for the inflammatory microenvironment-responsive delivery of neobavaisoflavone (NBIF) to promote cartilage regeneration in OA. The NBIF was encapsulated in situ in zeolitic imidazolate frameworks (ZIF-8 MOFs). The NBIF@ZIF-8 MOFs were decorated with polydopamine and incorporated into a methacrylate gelatin/hyaluronic acid hybrid network to form the NBIF@ZIF-8/PHG hydrogel. The hydrogel featured excellent cell/tissue affinity, providing a favorable microenvironment for recruiting cells and cytokines to the defect sites. The hydrogel enabled the on-demand NBIF released in response to a weakly acidic microenvironment at the injured joint site to resolve inflammatory responses during the early stages of OA. Consequently, the cooperativity of the loaded NBIF and hydrogel synergistically modulated the immune response and assisted in cartilage defect repair. In summary, the NBIF@ZIF-8/PHG hydrogel delivery platform represents an effective treatment strategy for OA-related cartilage defects and may attract attentions for applications in other inflammatory diseases.
Keyphrases