Subject-Based Model for Reconstructing Arterial Blood Pressure from Photoplethysmogram.
Qunfeng TangZhencheng ChenRabab WardCarlo MenonMohamed ElgendiPublished in: Bioengineering (Basel, Switzerland) (2022)
The continuous prediction of arterial blood pressure (ABP) waveforms via non-invasive methods is of great significance for the prevention and treatment of cardiovascular disease. Photoplethysmography (PPG) can be used to reconstruct ABP signals due to having the same excitation source and high signal similarity. The existing methods of reconstructing ABP signals from PPG only focus on the similarities between systolic, diastolic, and mean arterial pressures without evaluating their global similarity. This paper proposes a deep learning model with a W-Net architecture to reconstruct ABP signals from PPG. The W-Net consists of two concatenated U-Net architectures, the first acting as an encoder and the second as a decoder to reconstruct ABP from PPG. Five hundred records of different lengths were used for training and testing. The experimental results yielded high values for the similarity measures between the reconstructed ABP signals and their reference ABP signals: the Pearson correlation, root mean square error, and normalized dynamic time warping distance were 0.995, 2.236 mmHg, and 0.612 mmHg on average, respectively. The mean absolute errors of the SBP and DBP were 2.602 mmHg and 1.450 mmHg on average, respectively. Therefore, the model can reconstruct ABP signals that are highly similar to the reference ABP signals.