Login / Signup

Sympathetic arterial baroreflex hysteresis in humans: different patterns during low- and high-pressure levels.

Anthony V IncognitoMilena SamoraAndrew D ShepherdRoberta A CartafinaGabriel Guimarães Nunes MagalhãesMauricio DaherLauro C ViannaPhilip J Millar
Published in: American journal of physiology. Heart and circulatory physiology (2020)
Fluctuations in diastolic pressure modulate muscle sympathetic nerve activity (MSNA) through the arterial baroreflex. A higher sympathetic baroreflex sensitivity (sBRS) to pressure falls compared with rises has been reported; however, the underlying mechanisms are unclear. We assessed whether beat-to-beat falling and rising diastolic pressures operate on two distinct baroreflex response curves. Twenty-two men (32 ± 8 yr) underwent sequential bolus injections of nitroprusside and phenylephrine (modified Oxford test) with continuous recording of heart rate, blood pressure, and MSNA. The weighted negative linear regression slope between falling or rising diastolic pressure and MSNA burst incidence quantified sBRSfall and sBRSrise, respectively. The diastolic pressure evoking a MSNA burst incidence of 50 (T50) was calculated. sBRSfall was greater than sBRSrise (-6.24 ± 2.80 vs. -4.34 ± 2.16 bursts·100 heartbeats-1·mmHg-1, P = 0.01) and had a narrower operating range (14 ± 8 vs. 20 ± 10 mmHg, P = 0.01) that was shifted rightward (T50, 75 ± 9 and 70 ± 11 mmHg, P < 0.001). At diastolic pressures below baseline, sBRSfall was less than sBRSrise (-1.81 ± 1.31 vs. -3.59 ± 1.70 bursts·100 heartbeats-1·mmHg-1, P = 0.003) as low absolute pressures operated closer to the saturation plateau on the falling, compared with the rising pressure curve. At pressures above baseline, sBRSfall was greater than sBRSrise (-5.23 ± 1.94 and -3.79 ± 1.67 bursts·100 heartbeats-1·mmHg-1, P = 0.03). These findings demonstrate that the sympathetic arterial baroreflex possesses two response curves for processing beat-to-beat diastolic pressure falls and rises. The falling pressure curve is rightward shifted, which reduces sensitivity to falling pressure at low absolute pressures. This demonstrates that the direction of the hysteresis is influenced by the prevailing pressure level relative to each baroreflex response curve.NEW & NOTEWORTHY The findings show that the arterial baroreflex processes diastolic pressure dependent on the direction of pressure change from the previous beat, yielding two distinct baroreflex response curves to falling and rising pressure. Overall, the falling pressure curve is rightward shifted and more sensitive. The rightward shift caused a hysteresis reversal at hypotensive pressures as the falling pressure saturation plateau of the sigmoid response curve occurred at higher pressures than the rising pressure curve.
Keyphrases
  • blood pressure
  • heart rate
  • left ventricular
  • magnetic resonance imaging
  • magnetic resonance
  • ejection fraction
  • heart failure
  • heart rate variability
  • computed tomography