Login / Signup

Novel Porphyrin Zr Metal-Organic Framework (PCN-224)-Based Ultrastable Electrochemiluminescence System for PEDV Sensing.

Jing MaWenjing WangYun LiZhicheng LuXuecai TanHe-You Han
Published in: Analytical chemistry (2021)
The sensitive detection of coronavirus is of vital importance for the prevention of its rapid spread. Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets. In this work, a novel PCN-224-based electrochemiluminescence (ECL) system was constructed for PEDV detection with high sensitivity. We found that PCN-224 can be employed as an ECL reporter with a strong signal because of its zirconium-based organic porous frame nanomaterial with a large specific surface area and stable structure. TiO2 nanoparticles were used as an accelerator for the first time to promote the reduction of coreactant potassium peroxydisulfate on the cathode; thus, the initial ECL signal of PCN-224 was significantly amplified. In the presence of PEDV, the ECL signal decreased due to the block effect to electron transfer. As a result, the novel "signal off" biosensor achieved a sensitive detection of PEDV ranging from 1 pg/mL to 10 ng/mL, with a detection limit of 0.4 pg/mL (S/N = 3). Importantly, the PCN-224 nanomaterial enriched the ECL system in biological analysis, and the proposed strategy provided a new route for coronavirus detection.
Keyphrases